

Конфиденциальные вычисления

методы и технологии безопасной обработки данных

ФИНТЕХ — РАДАР

№8 МАЙ 2025

Конфиденциальные вычисления –

это набор инструментов обеспечения безопасности и повышения конфиденциальности, ориентированный на защиту используемых данных.

Ассоциация ФинТех основана в конце 2016 г. по инициативе Банка России и ключевых участников отечественного финансового рынка. Это уникальная аналитическая площадка для конструктивного диалога регулятора с представителями бизнеса. Здесь формируется экспертная оценка инновационных технологий с учетом международного опыта, а также разрабатываются концепции финансовых технологий и подходы к их внедрению.

СОДЕРЖАНИЕ

Что такое Финтех-Радар?	04.
Почему конфиденциальные вычисления важны? Мнение экспертов	06.
Ключевые выводы	08.
Организация обмена данными	10.
Таксономия данных	12.
Ключевые барьеры для обмена данными в России	14.
Иерархия ценности данных	15.
Подходы к обеспечению конфиденциального обмена данными	16.
Прорывные технологии в области конфиденциальных вычислений	17.
Обзор перспективных методов криптографии для конфиденциального обмена данными	22.
Регулирование технологий конфиденциальных вычислений в России	25.
Международный опыт организации конфиденциального обмена данными	27.
Разработка инструментов конфиденциального обмена данными в России	30.
Платформы обмена данными	34.
Инициативы Ассоциации ФинТех в области технологий конфиденциальных вычислений	37.

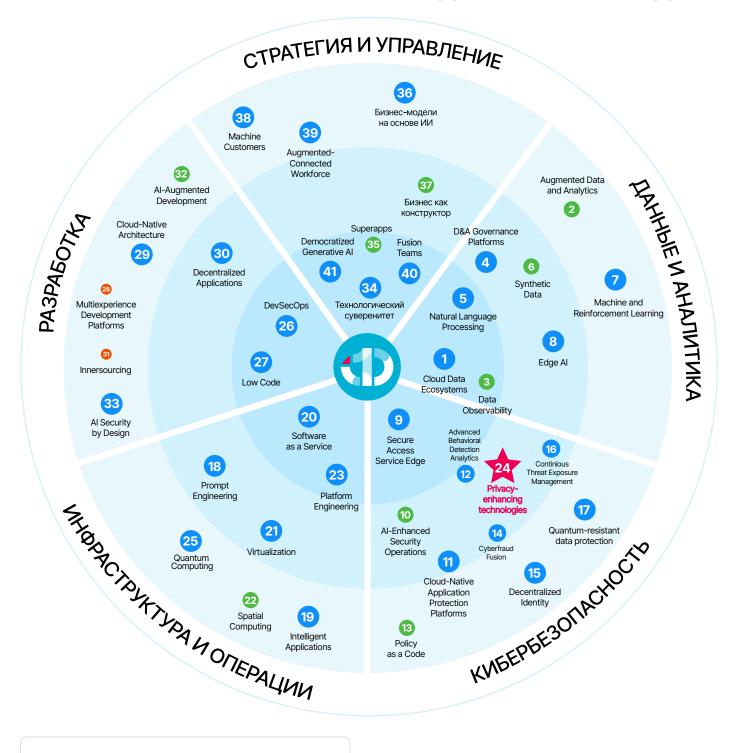
ОБ ИССЛЕДОВАНИИ

Вот уже третий год Ассоциация ФинТех отслеживает ключевые технологические тенденции, которые трансформируют финансовый рынок. Технологии конфиденциальных вычислений были выбраны ключевой темой не случайно. Из-за роста киберугроз защита данных становится критически важной. В 2025 году на площадке АФТ создана Лаборатория конфиденциальных вычислений, которая дает возможность участникам Ассоциации «почувствовать» все возможности этой технологии «здесь и сейчас».

Большинство международных аналитических агентств, таких как Gartner, Forrester, MIT сосредотачивают внимание именно на технологиях информационной безопасности и борьбе с новым поколением рисков и угроз. Мы со своей стороны также следим за тем, что происходит в мире и в России, и как организован обмен данными и их защита у крупнейших технологических компаний.

Этот выпуск подготовлен совместно с ведущим экспертами в области кибербезопасности. Совместно мы определили таксономию данных, выделили прорывные технологии конфиденциальных вычислений и криптографии и попытались доступным языком рассказать о ключевых методах безопасной обработки данных, которые используют участники российского финтеха. Надеемся, что наша совместная работа будет полезна для понимания, куда движется рынок кибербезопасности.

МАРИАННА ДАНИЛИНА


Руководитель управления стратегии, исследований и аналитики **Ассоциации ФинТех**

По вопросам Финтех-Радара и с обратной связью, пожалуйста, обращайтесь к команде исследований и аналитики Ассоциации ФинТех

research.analytics@fintechru.org

ТЕХНОЛОГИЧЕСКИЙ ФИНТЕХ-РАДАР 2024-2025 ГОДА

^{*} Для российского рынка горизонт адаптации трендов может увеличиваться на 1-3 года

ПОЧЕМУ КОНФИДЕНЦИАЛЬНЫЕ ВЫЧИСЛЕНИЯ ВАЖНЫ? МНЕНИЕ ЭКСПЕРТОВ

АЛЕКСЕЙ НЕЙМАН Исполнительный директор, **Ассоциация больших данных**

Развитие технологий и продуктов в сфере больших данных требует надежных решений для защиты информации. Для бизнеса это означает возможность использовать ценную аналитику, не подвергая риску конфиденциальность клиентских и корпоративных данных. Технологии приватных вычислений, включая гомоморфное шифрование, многосторонние вычисления (МРС) и дифференциальную приватность, позволяют анализировать данные без их раскрытия. Это способствует развитию совместных проектов, безопасному обмену информацией и созданию инновационных продуктов и услуг.

Ассоциация больших данных готовится к запуску Библиотеки методов конфиденциальной работы с данными — ресурса, который станет площадкой для сотрудничества специалистов и обмена знаниями. В Библиотеке будут собраны материалы о передовых технологиях защиты и безопасной обработки данных. Цель ресурса — сформировать единую терминологию, делиться актуальными практиками и поддерживать развитие технологических решений в сфере работы с данными.

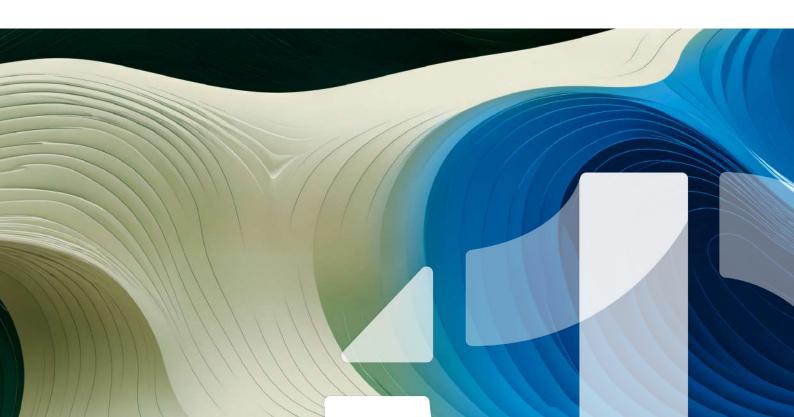
ПЕТР ЕМЕЛЬЯНОВ CEO, **Bloomtech**

Существуют сотни задач, успешное решение которых зависит от информационной коллаборации. У кредитных организаций это – оценка доходов, разные скоринги, антифрод. В медицине, например, зависимость фенотипа от генотипа. В промышленности – отраслевая и межотраслевая статистика. В науке – объединение данных исследований, в том числе международных. В инновациях – конфиденциальный искусственный интеллект. Примеров очень много. Как правило, такие задачи решают централизацией: давайте сложим все данные в одно место и посмотрим, что будет.

Минусы такого подхода очевидны. Коллективное бессознательное формулирует их так: не складывайте все яйца в одну корзину. Совместные конфиденциальные вычисления – новый, альтернативный подход: представьте, вы анализируете данные других компаний, а они анализируют ваши, но никто никому ничего не передает и не консолидирует у третьей стороны. Вы полностью контролируете использование ваших данных, сохраняете их перманентную ценность и выполняете обязательства перед своими клиентами. Прозрачное сотрудничество. И все это – благодаря математическому алгоритму, безопасность которого можно обосновать. Конфиденциальность больше не ограничение, конфиденциальность – это инструмент прогресса.

АНТОН ГУГЛЯ Генеральный директор, **QApp**

Технологии конфиденциальных вычислений способны решать задачи не только финансового сектора, но и медицинской, нефтегазовой и других отраслей экономики. Последние несколько лет в России наблюдается стремительное развитие как программных, так и аппаратных подходов реализации, увеличилось число пилотных проектов, модернизируется регуляторика и профильные образовательные программы.


Сформированы первые отраслевые рабочие группы (например, рабочая группа Ассоциации ФинТех, Газпромбанка и QApp по применению конфиденциальных вычислений в финансовой отрасли уже включает более 15 организаций-участников). Проводятся образовательные мероприятия на базе профильных университетов (например, открытый митап в МГТУ им. Н. Э. Баумана собрал более 150 человек).

В своих прикладных исследованиях и пилотных проектах мы в QApp фокусируемся на программном SMPCподходе, который позволяет выполнять процедуры вычислений на оборудовании и операционных системах общего назначения.

ИЛЬЯ ЛИВАШВИЛИНачальник Департамента аналитики и внедрения технологий, **Газпромбанк**

Конфиденциальные вычисления — технология новой эры цифровой безопасности в финтехе. Хотя технология пока не получила массового внедрения, ее потенциал сложно переоценить. В Газпромбанке мы целенаправленно тестируем решения на базе конфиденциальных вычислений, так как видим в них ключ к обновлению работы с клиентскими данными. Мы ожидаем, что в ближайшие годы конфиденциальные вычисления станут стандартом для отрасли. Внедрение таких решений — важный шаг к созданию по-настоящему эффективной и защищенной цифровой экосистемы.

КЛЮЧЕВЫЕ ВЫВОДЫ

- **1.** Данные становятся «топливом» для экономики и важнейшим нематериальным активом.
- **102.** Эффективный и безопасный обмен данными решает проблему нехватки «топлива» для технологий и может стать катализатором для экономического роста.
- 03. Вопрос обмена и совместного доступа к данным очень сложен и многогранен.

Для его эффективной проработки необходимо комплексное решение юридических, технических и организационных барьеров, снижение возникающих рисков и соблюдение баланса между достижением роста и обеспечением принципов этики.

- О4. Ценность для рынка имеют не сами данные, а «информация» и «знание». Именно на их основе можно принимать решения, учитывая риски и стратегические цели в долгосрочной перспективе.
- 05. Оптимальное сочетание подходов и технологий для обеспечения защищенного обмена и совместного доступа к данным складывается из следующих слагаемых:

Криптозащита каналов и среды обработки данных

Продвинутые методы обработки данных

Снижение «чувствительности» данных

06. В рамках текущего регулирования, технологии повышения конфиденциальности позволяют организовывать совместное получение доступа к данным, обмен ими и совместную обработку.

Организация обмена данными

Активная цифровизация, развитие информационных технологий и интернета вещей приводят к увеличению объемов данных, доступных для обмена и последующей обработки.

ЧТО ТАКОЕ ДАННЫЕ?

Данные – электронное представление информации в пригодном для передачи, обработки и интерпретации виде.

Благодаря возможностям аналитики, в том числе продвинутых методов на основе ИИ, данные могут быть **эффективно обработаны**, что способствует созданию дополнительной ценности и повышению производительности всей экономики.

Данные становятся «топливом» современной экономики, особенно в контексте развития искусственного интеллекта. Они представляют собой важный нематериальный ресурс, способный существенно влиять на эффективность, доходы и издержки компаний. Однако компаниям часто не хватает высококачественных данных, и при обмене данными, который мог бы решить эту проблему, они сталкиваются с рядом юридических, организационных и технологических проблем.

ЧТО ТАКОЕ ОБМЕН ДАННЫМИ?

Обмен данными:

- 1) передача структурированных/неструктурированных исходных данных,
- 2) **обмен результатами обработки данных** в виде информации и знаний (без передачи исходных данных), а также совместный доступ к данным, в том числе **Data Fusion**, для улучшения/обучения инструментов аналитики (в том числе AI/ML), помогающих принимать решения на основе «мудрости».

Data Fusion — процесс объединения и интеграции данных из различных источников для создания ценной информации, цель которого — достичь максимального синергетического эффекта данных при их совместной обработке.

ОБМЕН ДАННЫМИ ПОЗВОЛЯЕТ УЛУЧШИТЬ:

Данные могут быть разными и включать в себя, например, информацию реального мира - о физических и юридических лицах или окружающей среде. Как правило, выделяют **три составляющих общества** и, соответственно, **троих участников обмена данными:** клиент, бизнес-организации и государство.

КЛИЕНТ

Субъект данных: частные лица, коммерческие огранизации, государственные институты

- Персонализация продуктов
- Расширенный выбор
- Повышение удобства и сервиса
- Своевременность, эффективность и точность данных и услуг

Финансовые организации, Экосистемы, БигТех

- Монетизация «данных» (данные-нематериальный актив)
- Эффективность процессов
- Улучшенная бизнес-аналитика
- Улучшенная идентификация
- Привлечение клиентов
- Разработка новых продуктов
- «Расширенные» модели оценки (андеррайтинга)
- Общая безопасность

ГОСУДАРСТВО

Федеральные органы исполнительной власти, Банк России

- Обнаружение нарушений
- Эффективность политики (моделирование мер поддержки, стресс-тестирование и т.д.)
- Дополнительные данные для анализа
- Развитие конкурентного доступа к данным
- Поддержка инноваций и создание нового рынка
- Укрепление цифрового суверенитета

Более 60% российских финансовых компаний считают недостаток данных для обучения моделей ИИ одним из наиболее значимых барьеров для развития ИИ.

Однако, сегодня многие компании сталкиваются с **проблемой недостатка данных**. Качество и широта доступных данных быстро исчерпывают себя, что ограничивает возможности для развития указанных современных технологий. Особенно остро эта проблема стоит для обучения передовых моделей искусственного интеллекта.

ПРОБЛЕМА НЕДОСТАТКА ДАННЫХ

Потребности рынка

- Обеспечить поток ценной информации, обогатить данные о клиентах и рынке и улучшить их качество
- Внедрить инструменты продвинутой аналитики и ИИ для повышения эффективности принятия решений
- Улучшить взаимодействие с клиентом путем персонализации на основе данных
- Получить способ монетизации данных

Риски сохранения текущей ситуации

- Сохранение «серого» статуса обмена чувствительной информацией
- Сохранение барьеров для развития инструментов анализа данных и ИИ
- Отсутствие эффекта масштаба и сетевого эффекта от совместного использования данных
- Усугубление монополизации рынка рост «стратификации» организаций
- Сохранение исключительности БигТехов в области владения и монетизации данных

Итоговый эффект от обмена данными будет зависеть от их качества, разнообразия, уровня развития и доступности технологий их сбора, обработки и аналитики. Расширение возможностей использования данных может создать синергетический эффект в повышении эффективности участников рынка и экономики в целом.

Таксономия данных

Существуют различные подходы к классификации данных, которые стоит учитывать при их обмене и обработке. Таксономия данных зависит не только от содержания, но и от способа их получения и источника информации - необходимо взаимное однозначное соответствие типов данных между собой (единый стандарт семантики данных).

ПО ЭТАПАМ ОБРАБОТКИ

- 1. Необработанные (исходные) данные
- 2. Псевдонимизированные
- 3. Анонимизированные
- 4. Зашифрованные
- 5. Производные/Агрегированные
- 6. Синтетические
- 7. Мета-данные

ПО НЕОБХОДИМОСТИ УЧАСТИЯ **ЧЕЛОВЕКА**

- 1. Пригодные для обработки
- с помощью человека
- 2. Пригодные для обработки
- с помощью «машинного зрения»/ ИИ
- 3. Машиночитаемые / пригодные для обработки традиционными программными средствами

по источнику

- 1. Персональные данные
- 2. Коммерческие данные
- 3. Данные

государственного

4. Данные

окружающего мира

ПО СТЕПЕНИ КОНФИДЕНЦИАЛЬНОСТИ (ПО РОССИЙСКОМУ ЗАКОНОДАТЕЛЬСТВУ)*

Данные

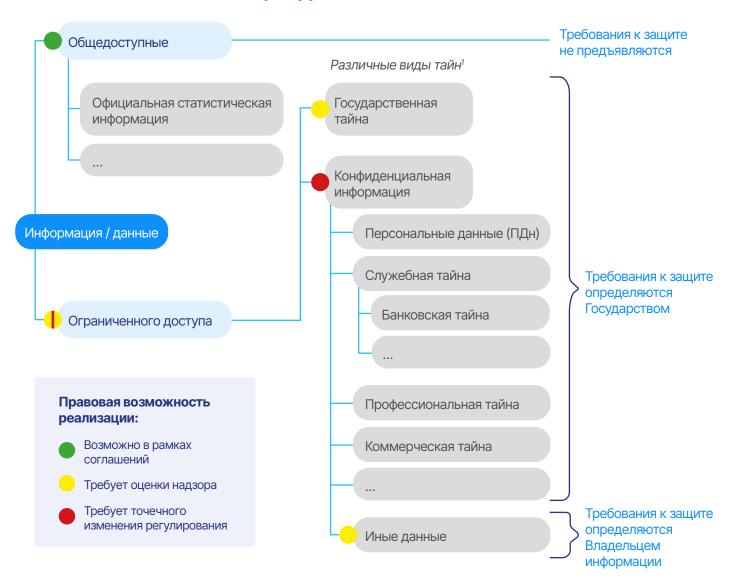
- 1. Общедоступные
- 2. Ограниченного доступа
- 2.1 Государственная тайна
- 2.2 Конфиденциальная информация
- 2.2.1 Персональные данные
- 2.2.2 Служебная тайна
- 2.2.3 Профессиональная тайна
- 2.2.4 Коммерческая тайна
- 2.2.5 Иные данные

ПО ТИПУ СБОРА ДАННЫХ

- 1. Авторские данные
- 2. Добровольно предоставленные данные
- 3. «Захваченные» данные
- 4. Производные данные
- 5. Идентификационные данные
- 6. Транзакционные данные
- 7. Справочные данные
- 8. Мета-данные
- 9. Неструктурированные данные
- 10. Результаты измерений

ПО КАЧЕСТВУ

- 1. Верифицированные данные
- 2. Частично качественные
- 3. Некачественные
- 4. Неполные
- 5. Зашумленные
- 6. Дублирующие


7. Устаревшие

* Для цели этого исследования рассматривается классификация по степени конфиденциальности данных

Таксономия данных в России формируется с учётом различных подходов к их классификации (например, по чувствительности, источнику и способу обработки), однако из-за отсутствия единого стандарта между регулирующими организациями возникают противоречия, что особенно заметно в финансовом секторе, где данные ограниченного доступа не имеют чётко определённых целей обработки.

ПРИМЕР КЛАССИФИКАЦИИ ДАННЫХ

¹Определения «тайны» соответствует контексту закона:

Тайна – режим конфиденциальности (коммерческая)

Тайна – информация ограниченного доступа (государственная, налоговая)

Обязательное для выполнения лицом, получившим доступ к определенной информации, **требование** не передавать такую информацию третьим лицам **без согласия** ее Владельца (NDA)

Классификация данных зависит от их чувствительности, источника и способа обработки, при этом разные категории информации (общедоступная, государственная, конфиденциальная) регулируются отдельно.

Ключевые барьеры для обмена данными в России

Концепция Открытых данных и вопрос обмена данными уже несколько лет активно обсуждаются участниками рынка не только в контексте развития решений ИИ, но и в рамках повышения общей эффективности бизнеса, улучшения клиентоориентированности и государственного регулирования за счет аналитики.

Тем не менее, на этом пути существуют ряд всем известных барьеров, связанных с обеспечением конфиденциальности «чувствительных» данных и информационной безопасностью, правовой неопределенностью и вопросами средств взаимодействия (несовместимости систем).

Помимо этого, существует важный организационный вопрос – **конфликт мотиваций**: участникам интересно получать и «обогащать» свои данные, но не делиться ими. Этот вопрос особенно актуален в случае организации обмена между ФинТехом и БигТехом в связи с возможностью регуляторного арбитража.

БАРЬЕРЫ ДЛЯ ОБМЕНА ДАННЫМИ В РОССИИ:

Развитие механизмов эффективного обмена данными возможно **только в условиях комплексного решения** юридических, технических и организационных барьеров.

Несмотря на долгое обсуждение, «прямой» обмен конфиденциальной информацией до сих пор находится в «серой» зоне регулирования. Ослабление требований к защите данных и информационной безопасности может повлечь серьезные последствия как с точки зрения развития киберпреступности и неконкурентных практик, так и с точки зрения снижения доверия граждан к информационным системам.

Развитие рынка данных требует настройки регулирования, в том числе классификации участников и определения общей таксономии данных. Такие изменения требуют большой вовлеченности и координации от регуляторов и участников рынка. Таким образом, вопрос обмена «чувствительной» информацией с использованием традиционных способов обеспечения конфиденциальности далек от решения, поиск таких компромиссов требует много времени и ресурсов.

Иерархия ценности данных

Современный рынок зачастую гонится за большими объемами данных, стремясь получить как можно больше информации. Однако сырые, необработанные данные, лишенные структуры и контекста, не представляют ценности для компании. Они остаются лишь набором разрозненных фактов, из которых невозможно извлечь полезные выводы.

Гораздо важнее не просто собирать данные, а преобразовывать их в знания – качественную, структурированную информацию с четкими механизмами использования. Только такие данные позволяют принимать обоснованные решения и создавать реальные конкурентные преимущества.

Именно поэтому простой обмен сырыми данными не имеет смысла. Ключевая задача рынка – разработать механизм передачи уже обработанной и структурированной информации, который обеспечит ее практическую пользу, но при этом сохранит конфиденциальность и предотвратит нежелательное разглашение.

Технологии конфиденциальных вычислений могут помочь в решении поставленной задачи и обеспечить безопасную обработку данных.

ЦЕННОСТЬ ДАННЫХ ДЛЯ РЫНКА:

Ценность данных для рынка возрастает

Сырые данные – это как неочищенная нефть: они содержат скрытую ценность, но в исходном виде практически непригодны для непосредственного использования. Их сбор и хранение – лишь первый шаг, как добыча нефти. Далее продукт переходит в стадию «информация» - это первичная переработка, например, синтез бензина. С целью снижения рисков, роста эффективности маркетинга и логистики, бензин становится «знанием» – например, производятся растворители, химические компоненты. В части формирования решения на основе качественных данных – изготавливаются высокомаржинальные продукты, а именно пластмассы, синтетический каучук.

Как нефть становится дороже после переработки в специализированные материалы, так и **данные превращаются в ключевой актив бизнеса лишь после преобразования в знания и решения**. Максимальную прибыль приносят не «сырые», а готовые продукты – алгоритмы, сервисы и стратегии, меняющие рынок.

«Данные → Информация → Знание → Мудрость» — это эволюция ценности, где на каждом этапе повышается качество и полезность для принятия решений.

Подходы к обеспечению конфиденциального обмена данными

Изучение вопроса организации обмена данными показало, что существующие отечественные практики состоят в основном из комбинации простых методов обезличивания и криптографических инструментов защиты данных, а также каналов их передачи, сред хранения. При этом сохраняется большая часть «чувствительной» информации передаваемых данных, что сразу связывает их с соответствующими режимами конфиденциальности и ограничениями на передачу.

Оптимальное сочетание подходов и технологий для обеспечения защищенного обмена и совместного доступа к данным складывается из следующих слагаемых:

Криптозащита каналов и среды обработки данных

Снижение «чувствительности» данных

Продвинутые методы обработки данных

Методы, демонстрирующие высокие значения одной из составляющих (например, конфиденциальности), могут обеспечивать надежную защиту данных, но при этом снижать доступность информации.

ФОРМУЛА ДЛЯ РЕШЕНИЯ ДИЛЕММЫ «ДОСТУПНОСТИ И КОНФИДЕНЦИАЛЬНОСТИ»

В контексте той или иной технологии, формула для решения дилеммы состоит из 3-х направлений:

ПОДХОДЫ К ОБЕСПЕЧЕНИЮ КОНФИДЕНЦИАЛЬНОСТИ

Криптозащита каналов и среды

Методы криптозащиты каналов

Шифрование Хэширование Токенизация

Методы защиты среды обработки данных

Вычисления в анклаве

Снижение «чувствительности» данных

Введение идентификаторов

Перемешивание

Агрегация

Декомпозиция

Изменение состава

Маскирование

Синтетические данные

Продвинутые методы обработки информации

Методы, основанные на криптографии

Гомоморфное шифрование Доказательство с нулевым разглашением Дифференциальная конфиденциальность

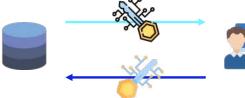
Конфиденциальные многосторонние вычисления («SPMC»)

Статистические методы

Трансферное обучение Федеративное обучение Методы дополнения моделей ИИ Имитация поведения AutoML

Конфиденциальные вычисления (Privacy-Enhancing Technologies, PETs) – это совокупность методов и технологий, обеспечивающих обработку и анализ данных без раскрытия их исходного содержания неавторизованным сторонам. PETs позволяют сохранять приватность информации на всех этапах её жизненного цикла (передача, хранение, обработка), минимизируя риски утечек и несанкционированного доступа.

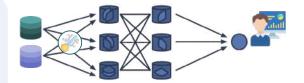
Обмен данными в конфиденциальных вычислениях — это ключевой элемент для безопасного сотрудничества между организациями. Он позволяет сохранять конфиденциальность, соблюдать законы и при этом использовать преимущества распределённых вычислений и ИИ. Без защищённого обмена данные остаются изолированными, что ограничивает их аналитическую и бизнес-ценность.


Прорывные технологии в области конфиденциальных вычислений

Технологии конфиденциальных вычислений (Privacy Enhanced Technologies, PETs) позволяют компаниям выполнять вычисления с зашифрованными данными, предотвращая несанкционированный доступ к конфиденциальной информации и в то же время извлекая ценную информацию. Таким образом, современные технологии позволят преодолеть указанные выше барьеры без значительных на то ресурсов и изменений в текущем регулировании.

ПРОРЫВНЫЕ МЕТОДЫ КОНФИДЕНЦИАЛЬНОЙ ОБРАБОТКИ ДАННЫХ:

Гомоморфное шифрование – метод шифрования, который позволяет выполнять вычислительные операции с зашифрованными данными. Он генерирует зашифрованный результат, который при расшифровке соответствует результату операций, как если бы они были выполнены с незашифрованными исходными данными.



Гомоморфное шифрование сложно использовать широко из-за ограничений методов и отсутствия общепринятых стандартов. Гомоморфные схемы шифрования обычно поддерживают только один тип операций, а анализ полностью зашифрованных данных значительно медленнее, чем анализ открытых данных. Использование этого метода ограничивается сценариями с узким функционалом или сценариями, где скорость вычислений не критична.

Безопасные многосторонние вычисления («SMPC»)

- «подраздел» гомоморфного шифрования с одним отличием: пользователи могут вычислять значения из нескольких зашифрованных источников данных. Таким образом, модели машинного обучения могут быть применены к зашифрованным данным, поскольку SMPC используется для большего объема данных.

SMPC – новая технология, применение которой в финансах ограничено. Причина в том, что она требует индивидуальной настройки для каждого случая использования и имеет высокие затраты на настройку. Разрабатываются «компиляторы» для общих вычислений и приложений анализа данных. Современные системы SMPC дорогие из-за высокой стоимости обеспечения специальных каналов связи.

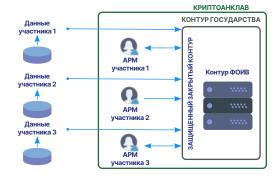
Дифференциальная конфиденциальность -

криптографический алгоритм добавляет слой «статистического шума» к набору данных, который позволяет описывать структуры групп внутри набора данных, сохраняя конфиденциальность отдельных лиц.

Технология дифференциальной конфиденциальности **хорошо подходит для использования в финансовых учреждениях**. Добавление «шума» позволяет создать баланс между точностью и конфиденциальностью, что делает этот метод подходящим для анализа общих тенденций, но не для выявления аномалий (таких как мошенничество) или точного сравнения.

Доказательства с нулевым разглашением – совокупность методов, которые используют набор криптографических алгоритмов, позволяющих проверять/подтверждать информацию, не раскрывая исходные данных.

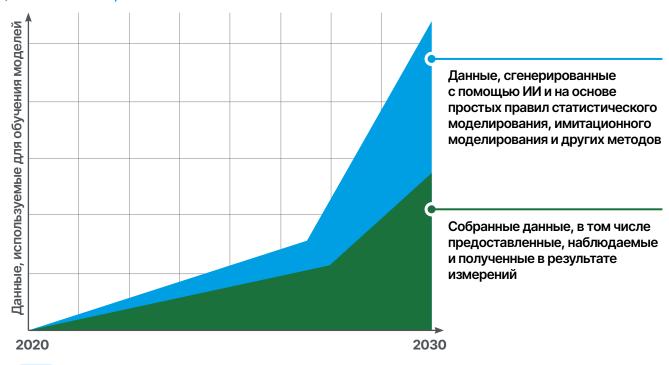
Доказательства с нулевым разглашением **недавно стали применяться на практике и будут играть ключевую роль** в развитии технологий распределенных реестров, таких как блокчейн. Методология продолжает развиваться и уже используется в различных областях, включая платежи, инфраструктуру интернета и цифровую идентификацию.


Федеративное обучение – это метод машинного обучения, который тренирует алгоритм на нескольких удаленных устройствах или серверах без обмена данными между ними. Этот метод позволяет минимизировать объем данных, хранящихся на централизованных серверах или в облаке, повышая тем самым конфиденциальность пользователей.

Федеративное обучение является технически развитой методикой, но в финансовой индустрии её применение пока что ограничено. Наибольшая ценность объединенного анализа проявляется при большом количестве отдельных источников данных, например, на смартфонах, устройствах интернета вещей, ноутбуках. В сфере финансовых услуг обычно не хранят в таком количестве конфиденциальную информацию из сотен и тысяч источников.

Вычисления в криптоанклаве – это метод обработки данных, при котором операции выполняются внутри защищенной аппаратно-программной среды (анклава), изолированной от основной системы. Данные остаются зашифрованными вне анклава и расшифровываются только внутри него, что исключает возможность их перехвата или несанкционированного доступа.

Наибольшую ценность вычисления в криптоанклаве представляют для задач, требующих высокой степени защиты, например: проверка кредитоспособности без раскрытия истории клиента, анализ мошеннических операций без доступа к исходным транзакциям, совместные вычисления между конкурирующими организациями (например, банками) без обмена сырыми данными.


Синтетические данные – это искусственно сгенерированные наборы данных, которые статистически схожи с реальными, но не содержат персональной или конфиденциальной информации. Они создаются с помощью алгоритмов машинного обучения или генеративных моделей (например, GAN), сохраняя полезные закономерности исходных данных, но исключая риск утечки.

Подход позволяет безопасно тестировать алгоритмы, делиться данными с третьими сторонами и проводить исследования без юридических ограничений. В финансовой индустрии синтетические данные применяются для обучения скоринговых моделей без использования реальных персональных данных или разработки и отладки финтех-решений.

Синтетические данные - это искусственные данные, сгенерированные для замены реальных данных в различных целях, таких как тестирование, исследования и обучение моделей. Они сохраняют структуру и характеристики исходных данных, не содержат личной информации и могут использоваться для защиты конфиденциальности. Синтетические данные относятся к информации, созданной на основе знаний.

ПЕРСПЕКТИВЫ РАЗВИТИЯ ДАННЫХ, ИСПОЛЬЗУЕМЫХ ДЛЯ ОБУЧЕНИЯ МОДЕЛЕЙ (2020 - 2030 гг.)

Gartner: в 2024 году >60% данных, используемых для разработки ИИ, были сгенерированы **синтетическим** путем¹

Применимость и эффективность синтетических данных напрямую зависит от применяемых алгоритмов, качества и «широты» использованных для генерации исходных данных.

Использование современных решений, таких как PETs, может способствовать преодолению барьеров при решении дилеммы доступа и конфиденциальности в рамках совместной обработки «чувствительной информации» между организациями.

ЧТО ПОЧИТАТЬ ПО ТЕМЕ?

МИНЦИФРЫ

Ведомство подготовило правила работы по обезличиванию персональных данных, которые должны начать действовать с сентября 2025 г. Операторам данных предложены пять методов, они будут проводиться только через софт Минцифры.

Источник:

kommersant.ru

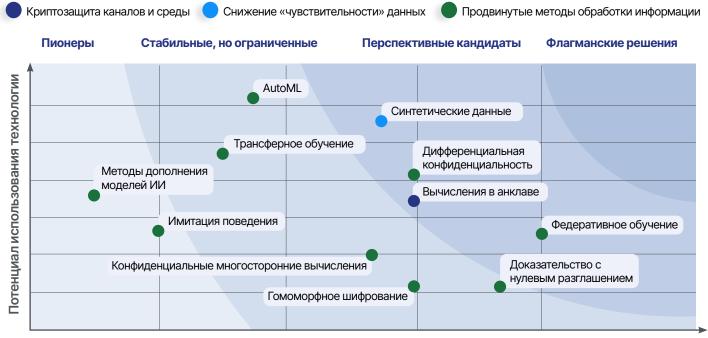
МНЕНИЕ ЭКСПЕРТОВ О ТЕХНОЛОГИЯХ

Состав экспертов, включающий участников рынка, членов Ассоциации ФинТех и приглашенных консультантов, оценил доверие регулятора к перечисленным технологиям, а также потенциал их использования.

В результате анализа мнений, технологии были распределены по двум схемам:

- «Доверие регулятора к технологии» и «Потенциал использования технологии».
- «Текущее использование технологии (в организациях)» и «Потенциал использования технологии».

ВЗАИМОСВЯЗЬ ДОВЕРИЯ РЕГУЛЯТОРА К ТЕХНОЛОГИИ И ПОТЕНЦИАЛА ЕЕ ИСПОЛЬЗОВАНИЯ



Доверие регулятора к технологии

Подготовлено АФТ при участии экспертов

Более 45% технологий при сравнении взаимосвязи доверия и потенциала использования относятся к разделу **«стабильные, но ограниченные»** – они достаточно быстро масштабируются, но нуждаются в дополнительном регулировании.

ВЗАИМОСВЯЗЬ ТЕКУЩЕГО УРОВНЯ ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИИ И ПОТЕНЦИАЛА ЕЕ ИСПОЛЬЗОВАНИЯ

Текущий уровень внедрения технологии

Подготовлено АФТ при участии экспертов

Анализ соотношения текущего уровня внедрения технологий и их перспектив развития показал, что свыше 54% решений обладают значительным потенциалом для масштабирования и дальнейшего роста.

Эффективный формат взаимодействия для обмена данными должен быть **гибким и адаптивным** (принцип «конструктора»), и учитывать разнообразие подходов, технологий и инструментов, а также участников этого процесса.

Обзор перспективных методов криптографии для конфиденциального обмена данными

Одними из самых перспективных методов криптографии для защиты данных можно назвать доказательство с нулевым разглашением и гомоморфное шифрование.

ДОКАЗАТЕЛЬСТВО С НУЛЕВЫМ РАЗГЛАШЕНИЕМ

Доказательство с нулевым разглашением (Zero-Knowledge Proof, ZKP) или протокол с нулевым разглашением – метод криптографии, с помощью которого одна сторона (доказывающая сторона) может доказать другой стороне (проверяющей стороне), что данное утверждение истинно, не раскрывая при этом ни самой информации, ни какой-либо дополнительной информации.

Свойства доказательства с нулевым разглашением

Свойства	Описания
Полнота (Completeness)	Если утверждение истинно, а доказывающий и проверяющий действуют честно, доказательство может быть принято.
Корректность (Soundness)	Если утверждение ложно, лживый доказывающий не может обмануть честного проверяющего, заставив его поверить в то, что неверное утверждение истинно (за исключением ничтожной вероятности).
Нулевое разглашение (Zero-knowledge)	Если утверждение истинно, ни один проверяющий не узнает ничего, кроме того факта, что утверждение истинно.

Существуют два типа доказательств с нулевым разглашением: интерактивные, когда происходит прямой обмен информацией между сторонами, и неинтерактивные, когда обмен информацией не требуется между доказывающим и проверяющим.

¹ По данным Bessemer Venture Partners: bvp.com

²По данным РБК: <u>rbc.ru</u>

Основные категории доказательств с нулевым разглашением:

- Краткие неинтерактивные аргументы знаний (Succinct Non-Interactive ARguments of Knowledge, SNARK);
- Масштабируемые прозрачные аргументы знаний (Scalable Transparent ARgument of Knowledge, STARK);
- Верифицируемое полиномиальное делегирование (Verifiable Polynomial Delegation, VPD);
- Краткие неинтерактивные аргументы (Succinct Non-interactive ARGuments, SNARG).

Примеры систем, поддерживающих доказательства с нулевым разглашением:

Система	Virgo ¹	zk-STARK ²	Zilch ³
Год публикации	2020	2019	2021
Протокол	zk-SNARK	zk-SNARK	zk-SNARK
Прозрачный протокол	Да	Да	Да
Универсальный протокол	Да	Да	Да
Постквантовый протокол	Да	Да	Да
Подходы к программированию	Арифметические схемы	Ассемблер	Объектно- ориентированный

Прозрачный протокол – не требует какой-либо надежной настройки и использует публичную случайность;

Универсальный протокол – не требует отдельной доверенной настройки для каждого канала;

Постквантовый протокол – не подвержен известным атакам с использованием квантовых алгоритмов.

¹ По данным IEEE Symposium on Security and Privacy (SP)

² По данным Crypto

³ По данным IEEE Transactions on Information Forensics and Security: <u>homomorphicencryption.org</u>

ГОМОМОРФНОЕ ШИФРОВАНИЕ

Гомоморфное шифрование (Homomorphic Encryption, HE) – метод криптографии, который позволяет выполнять вычисления над зашифрованными данными без необходимости их расшифровки. Отличие от типичных методов шифрования состоит в том, что метод позволяет выполнять вычисления непосредственно с зашифрованными данными, не требуя доступа к секретному ключу. Результат такого вычисления остается в зашифрованном виде и может быть позже раскрыт владельцем секретного ключа¹.

Распространенные типы гомоморфного шифрования

Типы	Описания
Частично гомоморфное шифрование (Partially Homomorphic Encryption, PHE)	Позволяет проводить только одну из операций – либо сложение, либо умножение на зашифрованных данных.
Отчасти гомоморфное шифрование (Somewhat Homomorphic Encryption, SHE)	Позволяет выполнять операции сложения и умножения на ограниченном наборе зашифрованных данных.
Уровневое полностью гомоморфное шифрование (Leveled Fully Homomorphic Encryption, LFHE)	Поддерживает выполнение произвольных операций над зашифрованными данными – сложение и умножение, с ограниченной, заранее определенной глубиной.
Полностью гомоморфное шифрования (Fully Homomorphic Encryption, FHE)	Поддерживает выполнение произвольных операций над зашифрованными данными. Является самым сильным типом гомоморфного шифрования.

Примеры библиотек с открытым кодом для полностью гомоморфного шифрования:

Название	Разработчик	Описание
Helib ²	IBM	Поддерживаемые схемы: BGV, CKKS
Microsoft SEAL ³	Microsoft	Поддерживаемые схемы: BGV, CKKS, BFV
OpenFHE ⁴	Duality Technologies, Samsung Advanced Institute of Technology, Intel, MIT, University of California, San Diego и другие	Поддерживаемые схемы: BGV, CKKS, BFV, FHEW, CKKS Bootstrapping, TFHE
Lattigo ⁵	EPFL-LDS, Tune Insight	Поддерживаемые схемы: BGV, CKKS, BFV, CKKS Bootstrapping

 $^{^1}$ По данным Homomorphic Encryption Standardization: $\underline{homomorphicencryption.org}$

² По данным GitHub: *github.com*

³ По данным Microsoft SEAL: *microsoft.com*

⁴ По данным OpenFHE: openfhe.org

⁵ По данным GitHub: *github.com*

Регулирование технологий конфиденциальных вычислений в России

Современные технологии защиты данных требуют комплексного подхода к регулированию, который бы одновременно стимулировал инновации и обеспечивал надежную защиту информации. Для этого необходимо создать сбалансированную систему мер, охватывающую как экономические стимулы, так и четкие процедурные рамки.

Разработка технических стандартов уже ведется в рамках «Технического комитета по стандартизации (ТК-22)» экспертами Ассоциации Больших Данных.

СТИМУЛЫ ДЛЯ РАЗВИТИЯ ТЕХНОЛОГИЙ

Формирование благоприятной регуляторной среды является ключевым условием для внедрения перспективных технологий защиты данных. В качестве основных стимулов предлагается:

Учет применения технологий при оценке мер по обеспечению безопасности

Снятие ограничений на обработку и введение дополнительных оснований обработки

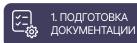
Совершенствование процедур сертификации за счет стандартизации требований

Подготовлено при участии экспертов АБД

Для обеспечения системного подхода к защите информации необходимо определить последовательность этапов внедрения защитных технологий.

ПРЕДЛОЖЕНИЯ ПО РЕГУЛИРОВАНИЮ ОБРАБОТКИ ДАННЫХ

Процесс регулирования должен включать:



Подготовлено при участии экспертов АБД

Для обеспечения доверия к таким решениям критически важен **прозрачный** и стандартизированный процесс сертификации, который подтверждает их надежность.

Создание унифицированной системы сертификации является важнейшим элементом регуляторной инфраструктуры.

ПОРЯДОК СЕРТИФИКАЦИИ ТЕХНОЛОГИЙ КОНФИДЕНЦИАЛЬНЫХ ВЫЧИСЛЕНИЙ

- Описание функциональных возможностей
- Описание архитектуры, используемых алгоритмов/ протоколов
- Категории защищаемых данных
- Реализуемые сценарии обработки данных
- Оценка рисков и описание мер по их минимизации

2. ЭКСПЕРТИЗА

Анализ

 Проверка соответствия требованиям, включая проверку соответствия ПНСТ

документации

- Оценка безопасности, включая анализ механизмов защиты данных
- Анализ рисков, включая оценку рисков повторной идентификации в соответствии с ПНСТ

 Проверка функций на соответствие заявленным

характеристикам

3. ИСПЫТАНИЯ/

ТЕСТИРОВАНИЕ

- Тестирование на устойчивость к атакам, включая атаки на конфиденциальные данные*
- Тестирование на соответствие требованиям безопасности, включая требования ПНСТ

*в рамках ЭПР

• Наименование и описание

4. ВЫДАЧА

СЕРТИФИКАТА

- Область применения
- Условия эксплуатации и ограничения
- Сведения о разработчике или поставщике

Подготовлено при участии экспертов АБД

Разработка единых технических стандартов представляет собой **фундамент для эффективного регулирования** в данной области. В рамках стандартизации необходимо:

- Описание технологий, включая конкретные методы (например, гомоморфное шифрование, федеративное обучение) и протоколы их применения.
- Типовые сценарии использования с указанием подходящих моделей угроз (включая возможных нарушителей).
- Закрепление модели оценки рисков повторной идентификации данных в зависимости от типа применяемой технологии.

Стандартизация не только упростит внедрение новых технологических решений, но и поможет регуляторам, разработчикам и бизнесу говорить на одном языке, **минимизируя риски и повышая доверие** к ним.

ЧТО ПОЧИТАТЬ ПО ТЕМЕ?

РОСКОМНАДЗОР

«Об утверждении требований к обезличиванию персональных данных и методов обезличивания персональных данных»

Федеральная служба подготовила проект нового приказа, регламентирующего порядок обезличивания персональных данных. Основное требование к операторам – сохранить безопасность обезличенных данных, чтобы их невозможно было полностью восстановить без дополнительной информации.

Источник:

regulation.gov.ru

Международный опыт организации конфиденциального обмена данными данными

ЕВРОПЕЙСКИЙ СОЮЗ¹

Common European Data Spaces – инициатива Европейского Союза, направленная на создание единого рынка данных. Она охватывает стратегические области, такие как здравоохранение, сельское хозяйство, производство, энергетика, мобильность, финансы и другие. Общие пространства данных обеспечивают безопасное и надежное взаимодействие между участниками, предоставляя возможность обмена данными для инноваций и улучшения продуктов и услуг.

Data Act – закон о данных, который регулирует справедливый доступ и использование данных в рамках цифровой экономики EC. Он предоставляет пользователям контроль над данными, генерируемыми их устройствами, защищает коммерческие тайны и способствует развитию конкурентного рынка данных. Закон также позволяет публичным органам использовать данные частного сектора для решения общественных задач.

Green Deal Data Space (GDDS) – пространство данных «Зеленого курса», которое охватывает климатические изменения, круговую экономику (экономика замкнутого цикла), загрязнение окружающей среды и биоразнообразие. Оно основано на принципах FAIR (возможность поиска, доступность, интероперабельность и повторное использование) для обеспечения качественного обмена данными между участниками.

Interoperable Europe Act – закон об интероперабельности Европы. Он способствует обмену данными между государственными органами EC через открытые стандарты и повторное использование решений. Это помогает сократить изолированность данных и ускорить цифровую трансформацию публичного сектора.

Европейские регуляторы непосредственно участвуют и финансируют создание **межотраслевых инициатив** в области обмена и совместной обработки данных, в том числе в рамках проектов развития ИИ.

ГЕРМАНИЯ¹

Financial Big Data Cluster (FBDC) – проект общерыночной облачной платформы данных финансового сектора в рамках **Gaia-X**, которая объединяет ранее не связанные данные компаний, регуляторов и научного сообщества в общий пул данных, и в перспективе будет оптимизирована для разработки приложений и систем ИИ.

Национальная инфраструктура исследовательских данных (NFDI) – проект, поддерживаемый Немецким научным фондом (DFG), организует обмен научными данными в социальных, поведенческих, образовательных и экономических науках. Он использует модель FDO для стандартизации обмена данными и создания экосистемы услуг для управления исследовательскими данными.

¹По данным Digital Strategy: <u>digital-strategy.ec.europa.eu</u>

Европейское регулирование – один из **наиболее детализированных режимов**, определяющих подходы и платформы обмена данными и описывающих стандарты при взаимодействии с ними.

ФРАНЦИЯ²

Dawex – международная компания, разрабатывающая решения для организации экосистем обмена данными для различных секторов. Dawex активно участвует в дискуссиях Европейской комиссии, Всемирного экономического форума и саммита G7. Платформа обмена данными Dawex обеспечивает безопасность данных с помощью современных методов анонимизации и шифрования, а также способствует соблюдению правовых аспектов обмена

Французская платформа открытых данных предоставляет доступ к более чем 47 000 наборов данных, включая проект «Сигналы», который помогает прогнозировать финансовые трудности компаний. Она способствует прозрачности и инновациям в публичных услугах через сотрудничество с государственными органами и объединение данных.

БЕЛЬГИЯ³

Data Broker Global – маркетплейс-платформа данных, разработанная и управляемая провайдером SettleMint. Data Broker Global использует технологию блокчейн для обеспечения безопасной передачи данных между продавцом и покупателем. Дополнительные услуги, предлагаемые на платформе, включают бесплатный сервис **DataMatch**, который помогает клиентам найти подходящие данные у потенциальных партнеров.

Национальный портал открытых данных Бельгии объединяет более 10 000 наборов данных от федеральных, региональных и местных властей. Среди приложений — мониторинг качества воздуха через инструменты Plume Air Report и BreezoMeter, которые демонстрируют потенциал открытых данных для решения экологических проблем.

Активно развивающееся регулирование в рамках ЕС стимулирует **создание частных и государственных инициатив** в области данных на национальном уровне.

СИНГАПУР1

Trusted Data Sharing Framework – инициатива, целью которой является обеспечение безопасного обмена данными между организациями, включая стандартизацию методологий, юридические шаблоны и рекомендации по оценке данных. Это способствует развитию цифровой экономики и поддерживает инновации, такие как искусственный интеллект.

¹По данным Semanticscholar: <u>semanticscholar.org</u>

² По данным DataEuropa: <u>data.europa.eu</u>

³ По данным DataEuropa: <u>data.europa.eu</u>

КИТАЙ²

Глобальная инициатива по сотрудничеству в области трансграничных потоков данных – инициатива объединяет международные потоки обмена данными для создания более открытой и недискриминационной среды. В рамках решения Китай позиционирует себя как сторонник сотрудничества в области данных, что может способствовать улучшению международных отношений и экономического взаимодействия.

Пространство доверенных данных – часть стратегии по развитию цифровой экономики в стране. Проект направлен на формирование безопасной и регулируемой среды для обмена и использования данных к 2028 году и будет объединять владельцев, поставщиков и пользователей данных на основе единых стандартов и правил.

Проактивное участие регулятора может стать определяющим фактором развития сферы обмена данными и доступа к ним, а также важной составляющей для возможности их монетизации.

ЯПОНИЯ³

Japan Data Exchange (JDEX) – биржа данных, созданная в сотрудничестве с Dawex, позволяющая организациям из различных отраслей безопасно приобретать, распространять, торговать и коммерциализировать данные в соответствии с японскими и международными нормами.

Большинство платформ обмена данными в мире находятся на стадии активной разработки и внедрения инициатив во все основные направления деятельности.

МИР4

Открытая библиотека методов гомоморфного шифрования – решение, созданное компанией Apple на языке Swift. Технология позволяет создавать приложения, обрабатывающие данные, доступные только в зашифрованном виде, без промежуточного раскрытия ни на одном из этапов вычислений. На выходе выдаётся безопасный ответ, который аналогичен шифрованию результата выполнения тех же вычислений над исходными данными.

¹По данным РwC: <u>pwc.com</u>

² По данным Crowell, SCMP: <u>crowell.com</u>, <u>scmp.com</u>

³ По данным Jast: <u>jast.jp</u>

⁴По данным OpenNET: <u>opennet.ru</u>

Разработка инструментов конфиденциального обмена данными в России

Эффективный обмен информацией и данными является критически важной задачей, позволяющей раскрыть потенциал технологий ИИ. В мире идет активная работа в данном ключе, однако большинство платформ обмена данными все еще находятся на стадии формирования и тестирования.

ИНИЦИАТИВЫ ПО РАЗРАБОТКЕ ИНСТРУМЕНТОВ ОБМЕНА И СОВМЕСТНОГО ДОСТУПА С ИСПОЛЬЗОВАНИЕМ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ В РОССИИ

<u>КЕЙС. ВТБ, МФТИ И Т1</u>1

МФТИ

Комплекс инструментов для передачи больших массивов данных

Крипто-анклав – инновационный комплекс инструментов, использующий технологии слепого машинного обучения, AutoML и безопасных вычислений в анклавах. Это первое в России решение, позволяющее организациям обмениваться данными в криптозащищенном пространстве для совместного построения прогнозных моделей без раскрытия конфиденциальной информации.

Криптоанклав представляет собой высокозащищенный программно-аппаратный комплекс, обеспечивающий полную конфиденциальность данных. Банки, телеком-операторы и другие компании могут безопасно загружать свои данные в зашифрованное пространство, где информация хранится и обрабатывается по принципу «черного ящика» – в закодированном виде, без возможности человеческого вмешательства или несанкционированного доступа.

Источник:

zanauku.mipt.ru

КЕЙС. АССОЦИАЦИЯ БОЛЬШИХ ДАННЫХ²

Supervised & Unsupervised ML на основе данных от различных поставщиков

Сервис «Собственное дело» – аналитика для старта бизнеса на основе анализа обезличенных данных от разных участников рынка, в том числе кредитных организаций, поисковых систем и телекоммуникационных компаний. Клиент сервиса сможет получить конкретные рекомендации по наиболее выгодной локации, более востребованному направлению бизнеса, среднему чеку и другим показателям.

По оценке экспертов АБД, запуск сервиса «Собственное дело» позволит создать 85 тысяч новых малых предприятий, а также 192 тысячи новых рабочих мест.

Источник:

rubda.ru

¹По данным ЗаНауку: <u>zanauku.mipt.ru</u>

²По данным АБД: *rubda.ru*

КЕЙС. ЯНДЕКС, ИСП РАН И СЕЧЕНОВСКИЙ УНИВЕРСИТЕТ³

Источник:

yandex.ru

Yandex Cloud PAH

Университет

Федеративное обучение в здравоохранении

Яндекс, Институт системного программирования РАН и Сеченовский Университет разработали нейросетевую модель, способную выявлять фибрилляцию предсердий – одну из самых распространённых сердечных патологий — на основе данных электрокардиограмм (ЭКГ).

Главный фокус проекта – практическая проверка технологии федеративного обучения (FL) в условиях, когда исходные данные остаются у владельцев и не покидают периметр организаций. Каждая сторона локально обучала модель на своём датасете, обмениваясь только параметрами, а не самими данными. Этот проект стал примером того, как можно запускать совместные исследования в области ИИ и медицины, соблюдая требования к приватности и безопасности медицинской информации.

Подход подтверждает применимость FL в чувствительных сферах, где невозможно централизованное хранение данных.

КЕЙС. HFLABS⁴

H F Labs

Обезличивание персональных данных с сохранением контекста

Продукт «Маскировщик» компании HFLabs предназначен для защиты персональных данных при тестировании ИТ-систем. Решение успешно применяется в банковском секторе, страховых компаниях и промышленности и подтвердило свою эффективность в ходе тестирования на риск-модели, разработанной Ассоциацией больших данных. Продукт представлен в виде коробочного решения.

Используя логику умной замены, «Маскировщик» при обезличивании сохраняет качество и контекст данных и делает их максимально похожими на настоящие. Продукт снижает риски утечки, упрощает внутреннюю передачу данных и позволяет использовать обезличенную информацию для обучения ML-моделей.

Источник:

cnews.ru

KEŬC.BLOOMTECH⁵

B L OO M T E C H

Расчет агрегированных клиентских метрик для скоринга

Флагманский продукт компании Bloomtech — **скоринговая инфраструктура** на транзакционных данных. Банки получают доступ к финансовой аналитике по клиентам, при этом:

- Не передают свои транзакционные данные другим участникам.
- Не хранят информацию у третьих сторон.
- Полностью контролируют собственные данные.

Решение позволяет осуществлять не просто обмен данными, а их совместное использование.

Источник:

bloomtech.ru

³По данным Яндекс: <u>yandex.ru</u>

⁴По данным CNews: <u>cnews.ru</u>

⁵По данным Bloomtech: <u>bloomtech.ru</u>

КЕЙС. ГАЗПРОМБАНК И QAPP¹

Источник:

futurebanking.ru

Конфиденциальные вычисления в кредитном скоринге

Завершен проект по анализу применения конфиденциального обучения модели оценки вероятности дефолта юридических лиц. В проекте использовался протокол конфиденциального вычисления SMPC (Secure multi-party computation) — семейство криптографических протоколов, которые распределяют вычисления между несколькими участниками, при этом ни одна из сторон не может узнать конфиденциальные данные других участников.

КЕЙС. SWORDFISH SECURITY

Использование чувствительных данных без угрозы раскрытия и с сохранением контекста

AppSec.Copilot – интеллектуальный нейроинженер по управлению уязвимостями на основе ИИ. При обучении имена файлов не используются, а имена переменных и методов, которые могли бы выдать принадлежность к владельцу данных, экранируются и преобразуются в токены. Таким образом, нельзя восстановить оригинальные данные из обучающего датасета.

Сама технология обучения с подкреплением (Reinforcement Learning, RL) не имеет зависимостей за контуром обучения, то есть обучается в закрытой инфраструктуре заказчика. Это, в свою очередь, исключает утечку данных, что для этой разработки является одним из приоритетов и знаком качества.

КЕЙС. GUARDORA

Платформа конфиденциальных вычислений

Guardora разрабатывает платформу для конфиденциальных вычислений, позволяющую компаниям использовать сторонние данные для обучения своих ML-моделей, без раскрытия данных.

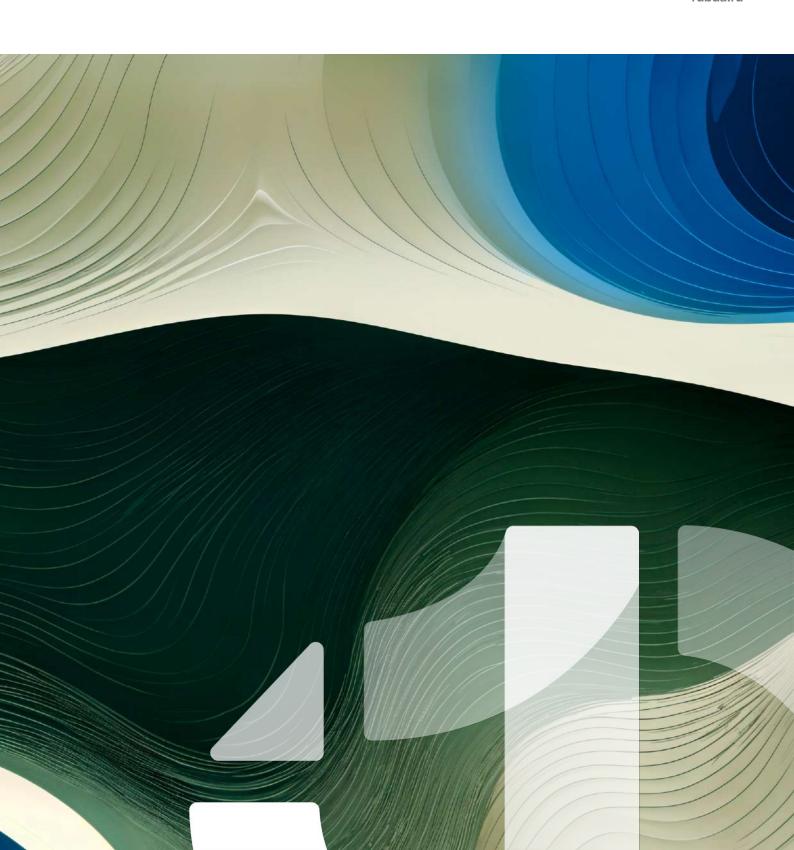
Флагманский продукт — Guardora VFL на основе вертикального федеративного обучения ориентирован на улучшение качества моделей скоринга физических лиц. Работает с табличными данными, поддерживает градиентный бустинг и линейные модели.

Безопасность обеспечивается:

- Федеративным обучением: данные не покидают защищенный контур владельца данных.
- Гомоморфным шифрованием передаваемых между участниками обучения промежуточных результатов вычислений локальных моделей.
- Алгоритмами PSI (Private Set Intersection) для синхронизации сущностей.

Доступные версии: облачная (приватное облако) и серверная (Docker-контейнер).

ЧТО ПОЧИТАТЬ ПО ТЕМЕ?


АССОЦИАЦИЯ БОЛЬШИХ ДАННЫХ

Ассоциация больших данных в рамках проекта «Библиотека практик» размещает примеры успешных отечественных кейсов в области защищенной обработки, конфиденциальных вычислений и доверенных сред исполнения данных.

Источник:

rubda.ru

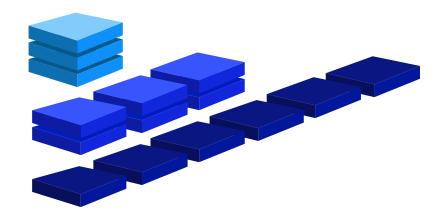
Платформы обмена данными

Несмотря на длительные обсуждения, вопрос прямого обмена конфиденциальной информацией по-прежнему остаётся в «серой» зоне регулирования. Для устойчивого развития рынка данных необходимо совершенствование нормативного регулирования, в частности – чёткая классификация участников и унификация таксономии данных. Однако реализация этих изменений требует согласованных усилий регуляторов и представителей рынка.

В настоящее время обмен конфиденциальными данными с использованием традиционных механизмов защиты остаётся сложной и не до конца решённой задачей, требующей значительных временных и ресурсных затрат. В рамках данного исследования предлагается новая структура платформ обмена данными, которая может стать шагом к решению этой проблемы.

Структура платформ обмена данными:

ГОСУДАРСТВЕННЫЕ ПЛАТФОРМЫ


Федеральные

Отраслевые

Муниципальные

КОММЕРЧЕСКИЕ ПЛАТФОРМЫ

ОДНОРАНГОВЫЙ ОБМЕН

ГОСУДАРСТВЕННЫЕ ПЛАТФОРМЫ

Особенности: небольшое количество инструментов обработки и анализа, стандартизация, единые высокие требования к ИБ, фиксированная структура организации обмена, тарификация.

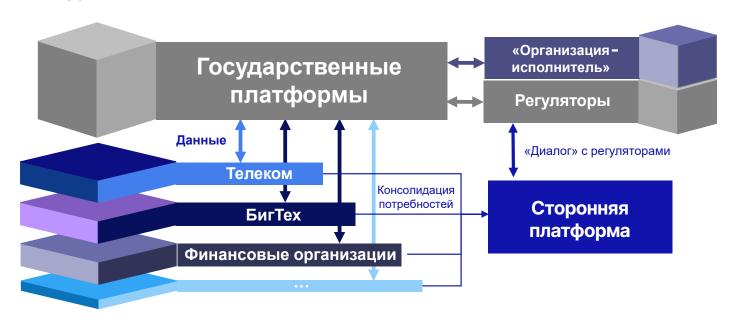
Данные: государственные (в т.ч. ограниченного доступа), востребованные отраслевые, верифицированные, частные (санитанизированные), научно-исследовательские.

ОДНОРАНГОВЫЙ ОБМЕН

Особенности: партнерские отношения, согласованные требования ИБ, ограниченная «широта» данных, слабая возможность монетизации.

Данные: двух организаций, информация для выполнения условий соглашений, иные NDA.

В рамках однорангового обмена функционирует технология Open API.


КОММЕРЧЕСКИЕ ПЛАТФОРМЫ

Особенности: широкий инструментарий, пилоты, стандартизация, гибкая структура организации, вариативный подход к методам, монетизация.

Данные: уникальные отраслевые (иные NDA), синтетические, полученная информация и знания, необработанные в различных форматах.

Будущая экосистема обмена данных может состоять из трех «слоев»: государственных платформ, коммерческих платформ и однорангового взаимодействия между участниками обмена.

ПРЕДЛОЖЕНИЯ ДЛЯ УЧАСТНИКОВ РЫНКА: ГОСУДАРСТВЕННЫЕ ПЛАТФОРМЫ

Возможная организационная форма

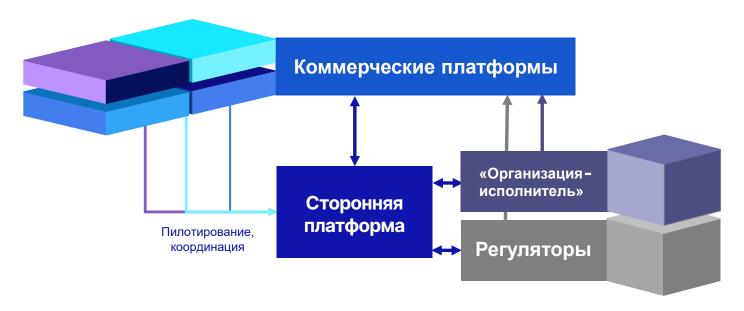
- Посредственное взаимодействие (оператор Государство).
- Гибридное взаимодействие.

Обрабатываемые данные

- Общедоступные статистические данные.
- Агрегированные рыночные данные.
- Важные отраслевые данные.
- Санитанизированные частные данные (ПДн, ...).
- Государственные (конфиденциальная информация).
- Служебная тайна (банковская, ...).
- Другие виды информации ограниченного доступа.

Принципы и условия функционирования

- Общий доступ для организаций (клиентов).
- Монетизация: тарификация.
- Общее регулирование.
- Использование одобренных отечественных технологий (КИИ).
- Интеграция платформ между собой.


Предполагается:

- «Санитизированные» данные на гос. платформах будут обрабатываться по общим стандартам, лишая их части семантической информации.
- Масштаб и уровень возможного ущерба при утечке не позволит гибко подходить к организации обмена и тестировать современные подходы обеспечения конфиденциальности.

Возможная роль сторонней платформы при создании государственной платформы обмена данными:

- Консолидация потребностей рынка в типах данных и функционале общих платформ.
- Поиск и адаптация лучших практик в области обмена и обработки данных рынка на базе пилотов для государственных платформ.

ПРЕДЛОЖЕНИЯ ДЛЯ УЧАСТНИКОВ РЫНКА: КОММЕРЧЕСКИЕ ПЛАТФОРМЫ

Возможная организационная форма

- Организация-посредник.
- Консорциум.
- Децентрализованная платформа (блокчейн).

Обрабатываемые данные

- Общедоступные данные (МСФО, отчетность).
- Иная информация (NDA).
- Профессиональная тайна* (коммерческая тайна, ...).
- Служебная тайна* (банковская, ...).
- Обезличенные ПДн*.
- Синтетические «чувствительные»*.
- *при условии положительной оценки надзора

Принципы и условия функционирования

- «Метчинг» Обмен.
- Монетизация: покупка/продажа/комиссия.
- Специализированное регулирование (ИБ, рискориентированный подход) экспериментальный режим.
- Использование одобренных технологий.

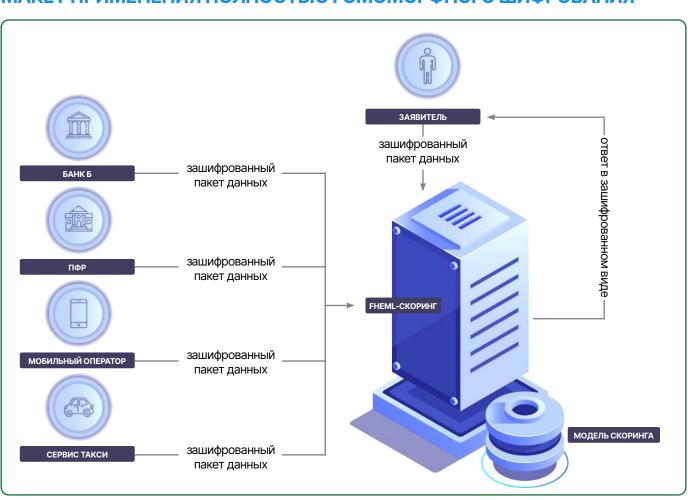
Предполагается:

- Платформы будут обладать возможностью гибко подходить к обработке выбранных типов данных и выбирать методы в зависимости от целей и запросов пользователей платформы.
- Создание нескольких платформ для решения как отдельных проблем (например, Антифрод), так и функционирующих по принципу «конструктора».

Возможная роль сторонней платформы при создании коммерческих платформ обмена данными:

- Пилотирование платформ и объединение усилий по улучшению общих решений на коммерческих платформах.
- Координация при внедрении современных и эффективных методов обеспечения конфиденциальности, тестировании технологий и проверки гипотез.
- Проведение рыночных исследований рынка данных и донесение консолидированного мнения до регуляторов.

Лаборатория конфиденциальных вычислений


Как Технологическая песочница АФТ ускоряет внедрение инноваций:

Технологическая песочница, созданная и успешно функционирующая несколько лет в Ассоциации ФинТех для пилотирования цифровых решений и сервисов, позволяет участникам быстрее выполнять совместные проекты и сокращать расход времени и ресурсов на их реализацию. Песочница предоставляет механизмы по апробации инновационных финансовых и информационных технологий, продуктов и услуг, а также российских и независимых технологических решений и является безопасным окружением для проверки гипотез о положительных эффектах для финансового рынка и потребителей.

В одном из доменов Технологической песочницы, отвечающем за апробацию новых технологий и инструментов информационной безопасности, создана **Лаборатория конфиденциальных вычислений.** Лаборатория, в отличие от пилотных окружений, является более **доступным местом для возможности тестирования продуктов и решений** и представляет собой простой и оперативный доступ к оборудованным экспериментальным стендам.

Эксперты видят высокий будущий потенциал конфиденциальных вычислений в разных областях, а Лаборатория дает возможность «прочувствовать» все возможности конфиденциальных вычислений «здесь и сейчас».

МАКЕТ ПРИМЕНЕНИЯ ПОЛНОСТЬЮ ГОМОМОРФНОГО ШИФРОВАНИЯ

Макет применения одного из подходов конфиденциальных вычислений - полностью гомоморфного шифрования (Fully Homomorphic Encryption, FHE), в отличие от традиционной парадигмы вычислений, **обеспечивает возможность создания новых бизнес-моделей с вычислениями** на зашифрованных данных без их расшифровки.

В основе решения лежит **машинное обучение**, сохраняющее конфиденциальность (Privacy-Preserving ML), которое открывает окно в мир обработки и использования данных.

Конфиденциальные вычисления скоро станут стандартной практикой на финансовом рынке, в здравоохранении, в корпоративной среде. Лаборатория конфиденциальных вычислений Технологической песочницы АФТ предоставляет уникальную возможность прикоснуться к решениям будущего уже сегодня.

Особый интерес вызывают решения с применением полностью гомоморфного шифрования, обеспечивающие приватность данных, обеспеченную криптографией, помноженной на силу технологий ИИ. Лаборатория предоставляет широкий спектр вариантов использования стендов с такими решениями, от «просто попробовать» до возможностей доработки и дообучения и создания собственных экспериментальных приложений для апробаций новых моделей принятия решений и кейсов их применения.

Заместитель генерального директора, Руководитель управления пилотирования и прототипирования, **АФТ**

Макет позволяет специалистам по данным без каких-либо предварительных знаний криптографии выполнять:

- Автоматическое преобразование моделей машинного обучения в их FHE-эквивалент.
- Обучение для сохранения конфиденциальности непосредственно на зашифрованных данных.
- Предварительная обработка зашифрованных данных с использованием структур DataFrame.

Пользователи Лаборатории легко могут настроить макет под апробацию своих собственных задач для прогнозирования, моделирования и оптимизации ключевых бизнес-процессов и функций. Гибкость решения, в основе которого лежит модель ИИ, предоставляет практически неограниченные возможности для экспериментов.

РЕТ-технологии становятся ключевым инструментом достижения баланса между цифровизацией и защитой данных граждан и бизнеса. Поэтому развитие экспертизы в области РЕТ-технологий критически важно — только так мы сможем создавать эффективные решения, которые позволяют оперативно (превентивно) реагировать на растущие угрозы нарушения конфиденциальности информации в цифровую эпоху, и позволяют развиваться технологиям и бизнесу.

АЛЕКСАНДР ТОВСТОЛИП

Руководитель Управления информационной безопасности, АФТ

Рабочая группа по технологиям конфиденциальных вычислений на базе АФТ

Рабочая группа по технологиям конфиденциальных вычислений — это профессиональное объединение представителей финансовой отрасли, технологических компаний и регуляторов, целью которого является исследование и апробация технологий конфиденциальных вычислений в контексте задач российской экономики.

Организаторы

Участники

14 круп фина

крупнейших компаний финансового рынка

Основные цели рабочей группы:

- Гармонизация знаний участников о текущем статусе развития технологий конфиденциальных вычислений и их применимости в финансовом секторе РФ.
- Выявление технологических и регуляторных барьеров на пути внедрения решений в промышленную эксплуатацию на горизонте 2025–2027 гг., а также определение возможных путей их преодоления.
- Координация усилий индустрии и регуляторов в сфере апробации технологий, направленных на безопасную и приватную работу с данными.
- Поиск точек синергии с национальными программами, включая проект «Экономика данных» и другие государственные инициативы.

В ходе встреч рабочей группы **участники обсуждают прикладные кейсы и делятся опытом** внедрения технологий. В частности, были представлены:

- Результаты тестирования программно-аппаратного комплекса «Крипто-анклав» для задач антифрода в банках.
- Кейс использования федеративного обучения для защиты конфиденциальности медицинских данных при обучении ИИ-сервисов.

Подробная информация о работе группы представлена на сайте QApp gapp.tech.

НАД ИССЛЕДОВАНИЕМ РАБОТАЛИ:

ИССЛЕДОВАНИЯ & АНАЛИТИКА АФТ

МАРИАННА ДАНИЛИНА

Руководитель Управления стратегии, исследований и аналитики **АФТ**

МАРИЯ ЧЕРНЫШЕВА

Младший бизнес-аналитик **АФТ**

АННА АНДРЕЙЧЕВА

Руководитель исследовательских проектов **АФТ**

АЛЕКСАНДРА ЩЕДРИНА

Арт-директор **АФТ**

ЭКСПЕРТЫ АФТ

АЛЕКСАНДР ТОВСТОЛИП

Руководитель Управления информационной безопасности **АФТ**

КИРИЛЛ КУЗЬМИН

Руководитель управления Пилотирования и прототипирования **АФТ**

Заместитель генерального директора **АФТ**

СЕРГЕЙ ЛАПИН

Эксперт Управления информационной безопасности **АФТ**

АЛЕКСЕЙ НЕЙМАН

Исполнительный директор **Ассоциация Больших Данных**

АНТОН ГУГЛЯ

Генеральный директор «QApp» (ООО «КуАпп»)

МАРАТ ТАХАВИЕВ

Руководитель GR-проектов **Ассоциация Больших Данных**

ПЕТР ЕМЕЛЬЯНОВ

CEO Bloomtech

АРТЕМИЙ СЫЧЕВ

Директор направления **Центр ИИ Сколтех**

АССОЦИАЦИЯ ФИНТЕХ ИССЛЕДОВАНИЯ & АНАЛИТИКА

research.analytics@fintechru.org

ТЕЛЕГРАМ-КАНАЛ АФТ

WWW.FINTECHRU.ORG

Ассоциация ФинТех основана в конце 2016 г. по инициативе Банка России и ключевых участников отечественного финансового рынка. Это уникальная площадка для конструктивного диалога регулятора с представителями бизнеса.

Здесь формируется экспертная оценка инновационных технологий с учетом международного опыта, а также разрабатываются концепции финансовых технологий и подходы к их внедрению.

Информация, содержащаяся в настоящем документе (далее – Исследовании), предназначена только для информационных целей и не является профессиональной консультацией или рекомендацией. Ассоциация ФинТех не дает обещаний или гарантий относительно точности, полноты, своевременности или актуальности информации, содержащейся в Исследовании. Материалы Исследования полностью или частично нельзя распространять, копировать или передавать какому-либо лицу без предварительного письменного согласия Ассоциации ФинТех.